In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$$
$$= \sum_{k = 1}^n \frac{1}{k}$$
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample
Sample Input | Sample Output |
---|---|
12 1 2 3 4 5 6 7 8 9 90000000 99999999 100000000 | Case 1: 1 Case 2: 1.5 Case 3: 1.8333333333 Case 4: 2.0833333333 Case 5: 2.2833333333 Case 6: 2.450 Case 7: 2.5928571429 Case 8: 2.7178571429 Case 9: 2.8289682540 Case 10: 18.8925358988 Case 11: 18.9978964039 Case 12: 18.9978964139 |